of their uncles and aunts? That wasn’t the way when I

For many years electricians had tried in vain to overcome this difficulty. Edison devoted a great deal of thought and energy to the question, in the course of which he experimented through one hundred and twenty consecutive nights, in the year 1873, on the line between New York and Washington. His solution of the problem was simple but effectual. It involved the principle of inductive compensation. In a shunt circuit with the receiving instrument he introduced electromagnets. The pulsations of current passed through the helices of these magnets, producing an augmented marking effect upon the receiving tape, but upon the breaking of the current, the magnet, in discharging itself of the induced magnetism, would set up momentarily a counter-current of opposite polarity. This neutralized the "tailing" effect by clearing the line between pulsations, thus allowing the telegraphic characters to be clearly and distinctly outlined upon the tape. Further elaboration of this method was made later by the addition of rheostats, condensers, and local opposition batteries on long lines.

of their uncles and aunts? That wasn’t the way when I

The other difficulty above referred to was one that had also occupied considerable thought and attention of many workers in the field, and related to the perforating of the dash in the transmission tape. It involved mechanical complications that seemed to be insurmountable, and up to the time Edison invented his perforating machine no really good method was available. He abandoned the attempt to cut dashes as such, in the paper tape, but instead punched three round holes so arranged as to form a triangle. A concrete example is presented in the illustration below, which shows a piece of tape with perforations representing the word "same."

of their uncles and aunts? That wasn’t the way when I

The philosophy of this will be at once perceived when it is remembered that the two little wheels running upon the drum of the transmitting instrument were situated side by side, corresponding in distance to the two rows of holes. When a triangle of three holes, intended to form the dash, reached the wheels, one of them dropped into a lower hole. Before it could get out, the other wheel dropped into the hole at the apex of the triangle, thus continuing the connection, which was still further prolonged by the first wheel dropping into the third hole. Thus, an extended contact was made, which, by transmitting a long impulse, resulted in the marking of a dash upon the receiving tape.

of their uncles and aunts? That wasn’t the way when I

This method was in successful commercial use for some time in the early seventies, giving a speed of from three to four thousand words a minute over a single line, but later on was superseded by Edison's Roman letter system, above referred to.

The subject of automatic telegraphy received a vast amount of attention from inventors at the time it was in vogue. None was more earnest or indefatigable than Edison, who, during the progress of his investigations, took out thirty-eight patents on various inventions relating thereto, some of them covering chemical solutions for the receiving paper. This of itself was a subject of much importance and a vast amount of research and labor was expended upon it. In the laboratory note-books there are recorded thousands of experiments showing that Edison's investigations not only included an enormous number of chemical salts and compounds, but also an exhaustive variety of plants, flowers, roots, herbs, and barks.

It seems inexplicable at first view that a system of telegraphy sufficiently rapid and economical to be practically available for important business correspondence should have fallen into disuse. This, however, is made clear--so far as concerns Edison's invention at any rate--in Chapter VIII of the preceding narrative.

ALTHOUGH Mr. Edison has taken no active part in the development of the more modern wireless telegraphy, and his name has not occurred in connection therewith, the underlying phenomena had been noted by him many years in advance of the art, as will presently be explained. The authors believe that this explanation will reveal a status of Edison in relation to the subject that has thus far been unknown to the public.

While the term "wireless telegraphy," as now applied to the modern method of electrical communication between distant points without intervening conductors, is self-explanatory, it was also applicable, strictly speaking, to the previous art of telegraphing to and from moving trains, and between points not greatly remote from each other, and not connected together with wires.

For more content, please click【government】专栏

tags