and then another and another, and the hinder-locks fell

In the next illustration (Fig. 4) there is shown in the upper sketch, greatly magnified, the cutting or recording tool in the act of forming the record, being vibrated rapidly by the diaphragm; and in the lower sketch, similarly enlarged, a representation of the stylus travelling over the record thus made, in the act of effecting a reproduction.

and then another and another, and the hinder-locks fell

From the late summer of 1878 and to the fall of 1887 Edison was intensely busy on the electric light, electric railway, and other problems, and virtually gave no attention to the phonograph. Hence, just prior to the latter-named period the instrument was still in its tin-foil age; but he then began to devote serious attention to the development of an improved type that should be of greater commercial importance. The practical results are too well known to call for further comment. That his efforts were not limited in extent may be inferred from the fact that since the fall of 1887 to the present writing he has been granted in the United States one hun- dred and four patents relating to the phonograph and its accessories.

and then another and another, and the hinder-locks fell

Interesting as the numerous inventions are, it would be a work of supererogation to digest all these patents in the present pages, as they represent not only the inception but also the gradual development and growth of the wax-record type of phonograph from its infancy to the present perfected machine and records now so widely known all over the world. From among these many inventions, however, we will select two or three as examples of ingenuity and importance in their bearing upon present perfection of results

and then another and another, and the hinder-locks fell

One of the difficulties of reproduction for many years was the trouble experienced in keeping the stylus in perfect en- gagement with the wave-like record, so that every minute vibration would be reproduced. It should be remembered that the deepest cut of the recording tool is only about one- third the thickness of tissue-paper. Hence, it will be quite apparent that the slightest inequality in the surface of the wax would be sufficient to cause false vibration, and thus give rise to distorted effects in such music or other sounds as were being reproduced. To remedy this, Edison added an attachment which is called a "floating weight," and is shown at A in the illustration above.

The function of the floating weight is to automatically keep the stylus in close engagement with the record, thus insuring accuracy of reproduction. The weight presses the stylus to its work, but because of its mass it cannot respond to the extremely rapid vibrations of the stylus. They are therefore communicated to the diaphragm.

Some of Edison's most remarkable inventions are revealed in a number of interesting patents relating to the duplication of phonograph records. It would be obviously impossible, from a commercial standpoint, to obtain a musical record from a high-class artist and sell such an original to the public, as its cost might be from one hundred to several thousand dollars. Consequently, it is necessary to provide some way by which duplicates may be made cheaply enough to permit their purchase by the public at a reasonable price.

The making of a perfect original musical or other record is a matter of no small difficulty, as it requires special technical knowledge and skill gathered from many years of actual experience; but in the exact copying, or duplication, of such a record, with its many millions of microscopic waves and sub-waves, the difficulties are enormously increased. The duplicates must be microscopically identical with the original, they must be free from false vibrations or other defects, although both original and duplicates are of such easily defacable material as wax; and the process must be cheap and commercial not a scientific laboratory possibility.

For making duplicates it was obviously necessary to first secure a mold carrying the record in negative or reversed form. From this could be molded, or cast, positive copies which would be identical with the original. While the art of electroplating would naturally suggest itself as the means of making such a mold, an apparently insurmountable obstacle appeared on the very threshold. Wax, being a non- conductor, cannot be electroplated unless a conducting surface be first applied. The coatings ordinarily used in electro- deposition were entirely out of the question on account of coarseness, the deepest waves of the record being less than one-thousandth of an inch in depth, and many of them probably ten to one hundred times as shallow. Edison finally decided to apply a preliminary metallic coating of infinitesimal thinness, and accomplished this object by a remarkable process known as the vacuous deposit. With this he ap- plied to the original record a film of gold probably no thicker than one three-hundred-thousandth of an inch, or several hundred times less than the depth of an average wave. Three hundred such layers placed one on top of the other would make a sheet no thicker than tissue-paper.

For more content, please click【way】专栏